LMT Fall 2024 Guts Round - Part 1	Team Name:	
1. [9] Find the least prime factor	of $2024^{2024} - 1$.	
hours each of them played this v	n members like to play Survev.io. They noticed that the number week forms an arithmetic progression. The person who played t e most played for 9. Find the total number of hours all nine gro to this week.	
3. [9] Two distinct positive even integers sum to 8. Find the larger of the two integers.		
LMT Fall 2024 Guts Round - Part 2	Team Name:	
song and then arrange the 5 par	es to make a song together. They each make their own parts for its. J Cole wants to be friends with both Drake and Kendrick, so both of theirs. Find the number of possible songs (distinct order	
	is prime, and his second favorite number is some integer n . Given $p+91$, find the maximum possible value of n .	
6. [10] Let <i>P</i> be a point in rectang Find the area of <i>ABCD</i> .	gle $ABCD$ such that the area of PAB is 20 and the area of PCD is	
LMT Fall 2024 Guts Round - Part 3	Team Name:	
7. [11] Let L be the answer to pro-	oblem 9. Find the solution to the equation $4x + \sqrt{L} = 0$.	
$\underline{\hspace{1cm}}$ 8. [11] Let M be the answer to pr	roblem 7. Let $f(x) = x^4 + 4x^3 + 6x^2 + 1$. Find $f(M)$.	
9. [11] Let <i>T</i> be the answer to pro	oblem 8. Find the area of a square with side length T .	
LMT Fall 2024 Guts Round - Part 4	Team Name:	
-	A and goes up and right along the grid lines to point B . At each bully. Find the number of paths David can take which make h	
	lacksquare B	
	E	
	C	
	$A \bullet $	
4 Snorlaxes, and 5 Bulbasaurs re	a store. An employee tells them that there are 2 Pikachus, 3 Eever maining inside the gacha machine. Given that this fan cannot fore opening them, find the least number of Poké Balls they m	
12. [12] Snorlax's weight is modele	ed by the function $w(t) = t2^t$ where $w(t)$ is Snorlax's weight at the eger time t such that Snorlax's weight is greater than 10000.	

LMT Fall 2024 Guts Round - Part 5	Team Name:
13. [13] Suppose j , x , and u are positive minimum possible value of j max(x , u)	we real numbers such that $jxu = 20$ and $x + u = 24$. Find the u .
14. [13] Find the number of trailing 0s i	n the base 12 expression of 99! (Note: 99 is in base 10).
	th side length 2 is inscribed within a sphere of radius 4. Le aximum value of the volume of the pyramid $ABCDEFX$.
LMT Fall 2024 Guts Round - Part 6	Team Name:
plate number of the <i>DaDerek Conver</i> equal to itself. Given that its license pla	social media known as the <i>DaDerek Convertible</i> . The licens <i>rtible</i> is such that the product of its nonzero digits times 5 is ate number has less than or equal to 3 digits and that it has a <i>erek Convertible</i> 's license plate number.
17. [14] Suppose <i>x</i> , <i>y</i> , <i>z</i> are pairwise dis	stinct real numbers satisfying
x^2	$z^2 + 3y = y^2 + 3z = z^2 + 3x.$
Find $(x + y)(y + z)(z + x)$.	
a nationwide total of 538. Thus, 270	of 51 places get some positive number of electoral votes for electoral votes guarantees a win. Across all distributions of the maximum number of sets of places that combine to have
LMT Fall 2024 Guts Round - Part 7	Team Name:
19. [15] Given $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, find	
	$\sum_{i=1}^{\infty} \sum_{j=1}^{j} \frac{1}{i j (i+1) (j+1)}.$
	j=1 $i=1$ $i=1$ $i=1$ $i=1$ $i=1$
numbers less than or equal to 100 in b	ces if it has a 7 as one of its digits. Find the number of base s
numbers less than or equal to 100 in b 21. [15] Let <i>ABC</i> be a triangle such the	ces if it has a 7 as one of its digits. Find the number of base to base 10 that probably place.
numbers less than or equal to 100 in b 21. [15] Let <i>ABC</i> be a triangle such the intersects <i>AB</i> at <i>D</i> , <i>AC</i> at <i>E</i> , and <i>BC</i> a	ces if it has a 7 as one of its digits. Find the number of base space 10 that probably place. at $AB = 2$, $BC = 3$, and $AC = 4$. A circle passing through $AC = 4$.
numbers less than or equal to 100 in b	ces if it has a 7 as one of its digits. Find the number of base space 10 that probably place. at $AB = 2$, $BC = 3$, and $AC = 4$. A circle passing through $AC = 4$ and $AC = 4$. Find $AC = 4$.
numbers less than or equal to 100 in be 21. [15] Let ABC be a triangle such the intersects AB at D , AC at E , and BC at E , and E at E and E at E and E at E and E and E at E at E and E at E and E at E at E and E at E at E at E at E and E at E a	Team Name:

......

LMT Fall 2024 Guts Round - Part 9	Team Name:
25. [20] Define $f(n)$ to be the sum of poprime. Find $f(2024)$.	positive integers k less than or equal to n such that $gcd(n, k)$
26. [20] Let <i>P</i> be a point in the interior of $\angle CPD$. If $PC = 7$ and $PD = 5$, find $\frac{PA}{PB}$	f square $ABCD$ such that $\angle APB + \angle CPD = 180^{\circ}$ and $\angle APB$.
27. [20] Find all positive integer pairs (<i>a</i>	(a,b) that satisfy the equation
a^2b	$+ab^2 + 73 = 8ab + 9a + 9b.$
.MT Fall 2024 Guts Round - Part 10	Team Name:
28. [23] Find the number of ways to tile blocks, with reflections and rotations	e a $2 \times 2 \times 2 \times 2$ four dimensional hypercube with $2 \times 1 \times 1 \times 2$ of the large hypercube distinct.
29. [23] Let $P(x)$ be a quartic polynomia $P(\sqrt{2} + \sqrt{3} + \sqrt{6}) = 0$. Find $P(1)$.	al with integer coefficients and leading coefficient 1 such th
30. [23] Find	$\sum_{n=1}^{\infty} \frac{\varphi(n)}{(-4)^n - 1},$
where $\varphi(n)$ is the number of positive i	integers $k \le n$ relatively prime to n . (Note $\varphi(1) = 1$.)
LMT Fall 2024 Guts Round - Part 11	Team Name:
	imradius 12, and denote the orthocenter and circumcenter to be the intersection of line AH and the circumcircle of AB and AH_A .
32. [26] Let a and b be positive integers	s such that
	$a^2 + (a+1)^2 = b^4.$
Find the least possible value of $a + b$.	
a 33. [26] Let a and b be positive real number a	mbers that satisfy
$\sqrt{a-ab} + \sqrt{b-ab} = \frac{\sqrt{a-ab}}{a}$	$\frac{6+\sqrt{2}}{4}$ and $\sqrt{a-a^2} + \sqrt{b-b^2} = \left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^2$.
Find the ordered pair (a, b) such that	a > h and $a + h$ is maximal

LMT Fall 2024 Guts Round - Part 12	Team Name:
34. [30] Let a sequence a_n be define	d by $a_0 = 0$ and $a_n = na_{n-1} + 2^n$. Estimate $\frac{a_{2024}}{2024!}$.
Submit a positive real number E min $\left(30, \frac{5}{ E-A }\right)$ points.	in decimal form. If the correct answer is A , you will receive
35. [30] Estimate the number of ways blocks, with reflections and rotatio	to tile a 5 dimensional $2 \times 2 \times 2 \times 2 \times 2$ hypercube with $2 \times 1 \times 1 \times 1 \times 1$ ins of the large cube distinct.
Submit a positive real number E in	decimal form. If the correct answer is <i>A</i> , your score will be
	$\max\left(0, \left\lfloor 30\left(1-\left \ln\frac{E}{A}\right \right)\right\rfloor\right).$
length 1 mile. Each of them walks per hour. After 1 hour, Kenny spor	enny stand at the four corners of South Park, a square with side at a random angle between their two adjacent edges at 1 mile ntaneously explodes and dies, killing everyone strictly within a ected number of people who will be killed in this explosion.
Submit a positive real number E min $\left(30, \left\lfloor \frac{1}{ E-A ^{0.6}} \right\rfloor \right)$ points.	in decimal form. If the correct answer is A , you will receive

......